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Abstract

We present here a formulation for geometrically-exact multilayer shells, where the number of layers is completely
arbitrary and not necessarily restricted to three as in the case of sandwich shells. Based entirely in terms of stress

resultants, the formulation accommodates ®nite deformation in membrane, bending, and shear deformation. Typical
of geometrically-exact formulation, the kinematics of the shell is referred directly to an inertial frame, and not by
means of a ¯oating frame. The motion of a transverse ®ber of an N-layer shell is exactly that of a chain of N rigid

links connected by universal joints, in three-dimensional space. The kinematics of deformation in each layer is
expressed in terms of the deformation of an arbitrary layer chosen as a reference layer. The thickness and side
dimensions of each layer are also arbitrary. These features allow a convenient modeling of multilayer shells with ply

drop-o�s. We also show that the present formulation reduces exactly to the case of multilayer beams. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multilayer structures have widespread applications in engineering, and have been a subject of
investigation for several decades. A particular case of multilayer shells is the case of sandwich shells,
which formed the central theme in the basic monograph of Plantema (1966). More recently, there are
some review papers on formulations for multilayer plates (Noor and Burton, 1989) and more
particularly for sandwich plates and shells (Noor et al., 1996). The readers are referred to these review
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papers and to those cited in our previous works1 for a ¯orilegium of references on these subjects. In Vu-

Quoc et al. (1997b), we present the formulation for geometrically-exact sandwich shells that can undergo

large deformation and large overall motion. In the present paper, we address the general case of

geometrically-exact multilayer shells.

Several authors have considered the formulation of multilayered shells, with di�erent approaches, and

with a general limitation to the static case; the general dynamic case is considered in this paper. Pinsky

and Kim (1986) employed the degenerated-solid approach to develop a multilayered-shell formulation

that can account for small strain, large rotations, and elastic±viscoelastic 3D constitutive laws. Braun et

al. (1994) extended the Reissner±Mindlin formulation from ®ve parameters (no-drill degree of freedom)

to seven parameters by using the Enhanced Assumed Strain approach, in which the transverse normal

strain was allowed to vary linearly across the thickness of each layer. Similar to Pinsky and Kim (1986),

complete 3D constitutive laws are employed in this formulation. Basar et al. (1993) generalized the

formulation propounded by Reddy (1989), in which a cubic displacement ®eld was employed, to the

nonlinear range where ®nite rotation was allowed. The transverse director was originally normal to the

shell mid-surface, as in Naghdi (1972). This formulation was restricted to the static case; the equations

of equilibrium in terms of stress resultants were not derived, since the emphasis was on a ®nite element

formulation. In fact, most prior works on nonlinear multilayer shells were primarily preoccupied with

the static case, ignoring the dynamic aspects. Our formulation starts from a di�erent perspective, from

which the complete set of equations of motion for the dynamic case are derived. The computational

aspects of our formulation are discussed elsewhere, in di�erent papers. We refer to Vu-Quoc and Deng

(1995, 1997a) for the static and dynamic computation of sandwich beams, and to Vu-Quoc et al.

(2000b,c) for the static and dynamic computation of sandwich shells. We also note that our treatment of

®nite rotations is also di�erent from Basar et al. (1993).

The present work parallels that in Vu-Quoc and EbciogÆ lu (1996) for geometrically-exact multilayer

(planar) beams and 1D plates. In fact, the methodology and crucial results developed in that reference

are employed here for geometrically-exact multilayer shells. Typical for geometrically-exact formulation,

the dynamics of motion of the multilayer shells in the present formulation is referred to a ®xed inertial

frame. Large deformation and large overall motion are accommodated for. The transverse ®ber in each

layer, inextensible in the present formulation, is not required to remain normal to the centroidal surface

of that layer after deformation, thus allowing for shear deformation in each layer. The transverse ®ber

across the whole multilayer shell deforms as a chain of rigid links that are connected to each other by

universal joints. The continuity of the displacement is thus exactly enforced across the layer boundaries.

The number of layers can be even or odd, and is completely unrestricted. The thickness and side

dimensions of each layer are arbitrary. It is, therefore, possible to use the present formulation to model

multilayer shells with ply drop-o�s, or with patches of constrained viscoelastic materials or of

piezoelectric materials (see Fig. 1). The deformation of each layer is related to that of a reference layer,

Fig. 1. Multilayer shells with patches of constrained viscoelastic materials or of piezoelectric materials.

1 For example, Vu-Quoc and EbciogÆ lu (1995, 1996)
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chosen arbitrarily. This feature stands in sharp contrast to the formulation for sandwich shells in Vu-
Quoc et al. (1997b), where the core (middle) layer was chosen as the reference layer. For example, in the
present formulation, the top layer or the bottom layer can be chosen as the reference layer (see Fig. 2).

The equations of motion of the multilayer shell are derived based on the principle of virtual power,
and expressed in terms of weighted resultants forces and couples. The principal kinematic quantities to
be solved for are the deformation map of the centroidal surface of the reference layer (0), and the layer
directors. Computationally, we have three translational components of the centroidal surface of the
reference layer (0) and two rotational components for each layer director, since the layer directors are
not rotating about themselves (no drill degree of freedom). We refer the readers to Vu-Quoc et al.
(2000c) (statics) and Vu-Quoc et al. (2000b) (dynamics) for the computational formulations.

We show that the equations of motion for geometrically-exact shells developed herein reduce exactly
to those of multilayer beams and 1D plates derived earlier in Vu-Quoc and EbciogÆ lu (1996). Physical
interpretation of the coupling terms that appear in the equations of motion is given. For truly large
deformation in which the thickness of the shell is deformable, we refer the readers to Vu-Quoc and
EbciogÆ lu (2000a) for multilayer beams. We will report the result for multilayer shells with deformable
thickness in a future paper.

2. Kinematics of deformation

The basic kinematics for geometrically-exact multilayer shells is presented in this section, together
with some preliminary results that will be used in subsequent sections.

2.1. Basic kinematic assumptions and con®gurations

We present in Fig. 3, the pro®le of a multilayer shell in the material con®guration B. Let xxx 2 B
designate a material point having the material coordinates fx1, x2, x3g, and fE1, E2, E3g be the
associated basis vectors, as shown in Fig. 3. We denote the reference layer as layer (0); the kinematics of
deformation of all other layers are referred to layer (0). In the present formulation, the number of layers
in the shell is arbitrary, and so is the layer thickness. Any layer can be chosen as reference layer. Shown
in Fig. 3 is an example of a ®ve-layer shell, with the second layer from bottom chosen as the reference
layer (0). Below, we will describe the notation adopted for various kinematic quantities.

Once the reference layer (0) is chosen, layers above Layer (0) are numbered with positive integers, and
layers below Layer (0) with negative integers. Let ` 2 Z� designate a layer number.2 When both the

Fig. 2. Multilayer shells with arbitrary reference layer and with ply drop-o�s.

2 Z��f0; 1, 2, 3, . . .g is the set of non-negative integers.

L. Vu-Quoc, I.K. EbciogÆlu / International Journal of Solids and Structures 37 (2000) 6705±6737 6707



upper layer ��`� and the lower layer �ÿ`� are present, we often refer to both of these layers by �s`),
where s �21 designates the sign (positive for upper layers, and negative for lower layers). This
compact notation will prove to be convenient for the exposition of the formulation.

Following Vu-Quoc and EbciogÆ lu (1996), we let N
�

be the number of lower layers, N̂ the number of
upper layers, and

NM
�
ÿN

�
, . . . ,ÿ 1, 0, 1, . . . , N̂

	
, �1�

NMN
�
� 1� N̂, �2�

the set of layer labels and the total number of layers, respectively. Note that, in general, N
�
6�N̂, i.e., the

number of lower layers need not be the same as the number of upper layers. Our formulation thus
allows for an arbitrary choice of the reference layer (0) to be anywhere from the bottom layer to the top

Fig. 3. Multilayer shell: Pro®le and geometric quantities.
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layer. Let the origin of the transverse material coordinate x3 be at the material centroidal surface 3 of
layer (0), called the material reference centroidal surface �0�A �A, which is coordinatized by xxxaMfx1,
x2g: The distance from �0�A to the material centroidal surface �s`�A of layer �s`� is denoted by �s`�Z > 0:4

With �`�rt being the mass density in the current con®guration Bt, the centroidal surface of layer �s`� is
then de®ned such that�

�` �H

�
x3 ÿ s�s`�Z

�
�s`�jt�s`�rt dx3 � 0, 8t, 8s` 2N, �3�

and does not in general coincide with the geometric center of that layer. It should be noted that the
overall neutral surface of the multilayer shell, i.e., the surface on which the membrane stresses are zero,
is not necessarily the centroidal surface of layer (0) (or the reference centroidal surface).

The surface �s`�A is at the distance �s`�h� from the top of layer �s`), and at �s`�hÿ from the bottom of
layer �s`). The thickness of layer �s`� is given by

�s`�HM�s`�h
� � �s`�hÿ � �s`�h�s � �s`�hÿs, �4�

with �s`�h�6��s`�hÿ in general. In Eq. (4)2, note that �s`�hÿs � �`�hÿ for s � �1, and �s`�hÿs � �ÿ`�h� for
s � ÿ1; a similar interpretation holds for �s`�h�s: Further,

�0�Z � 0, �s`�Z �
�
�s`�Y� �s`�hÿs

�
, for s` 2Nnf0g, �5�

�s`�YMÿ �0�hÿs �
Xs�`ÿ1�
i�0

�i�H � �0�h�s �
Xs�`ÿ1�
i�s
�i�H, for s` 2Nnf0g, �6�

where �s`�Y designates the distance from the material reference centroidal surface of layer (0) to the
interface between layer �s�`ÿ 1�� and layer �s`); see Fig. 3.

Remark 2.1. It is clear that when we write ` 2N, the index ` designates both the upper and the lower
layers; in cases like these when there is no confusion, we thus omit the use of the sign s. Thus, layer �`�
with ` 2N can also be designated as layer �s`� with s` � sign�`� j`j 2N, where sign is the signum
function, and j � j the absolute value operator. In other words, in the notation �s`), ` always takes on
positive values.

Remark 2.2. In view of Remark 2.1, the summation in Eq. (6)1 is to be interpreted as follows: In the upper
summation limit s�`ÿ 1�, we have �`ÿ 1�r0, and thus the sum in Eq. (6)1 is to be carried out only when
`r1: There are two cases for Eq. (6)1: (i) If s � �1 (i.e., upper layers), the range of the summation index
i is f0; 1, 2, . . . ,�`ÿ 1�g; (ii) If s � ÿ1 (i.e., lower layers), the range of i is f0; ÿ1, ÿ2, . . . ,ÿ �`ÿ 1�g:
Since for ` � 0, there is no sum, it is clear that with this convention, Eq. (5)1 is a particular case of Eq.
(5)2, after substitution of Eq. (6)1 into Eq. (5)2. Similarly, for Eq. (6)2, the summation is carried out only
for `r2:

Let �`�H 3 x3 be the domain in the thickness direction of layer �`), such that

3 A precise de®nition of the centroidal surface will be given later in Eq. (3).
4 Note that �s`�Z is not the ordinate, but the distance, and is thus a positive number.

L. Vu-Quoc, I.K. EbciogÆlu / International Journal of Solids and Structures 37 (2000) 6705±6737 6709



�s`�HM
hÿ
s�s`�Zÿ �s`�hÿ

�
,
ÿ
s�s`�Z� �s`�h�

�i � R, �7�

and HM [
`2N�`�

H the domain in the thickness direction of the whole multilayer shell. Since the
projection of all material centroidal surfaces �`�A, 8` 2N, onto the plane fx1, x2g is denoted by
A � R2, the material domain of layer (`), denoted by �`�B, and the material con®guration B can be
expressed by

�`�B �A� �`�H, B �A�H �
[
`2N

�`�B: �8�

Further, we de®ne

�`�SM@A� �`�H �9�
to be the material lateral surface of layer �`), where @A is the boundary of A; see Fig. 4. Then

S �
[
`2N

�`�S �10�

is the (material) lateral surface of B:
It follows from Eqs. (8) and (9) that the outward normal �`�nnn��`�naEa to the material lateral boundary

surface �`�S, which is de®ned in Eq. (9), is such that

�`�nnn � �0�nnn, 8` 2Nnf0g: �11�
That is, the outward normals to the material lateral boundary surfaces �`�S are the same for all layers.
In other words, the surfaces �`�S are all parallel to each other, and orthogonal to the material centroidal
surface A � �0�A (see Figs. 3 and 4).

Let the initial con®guration of the multilayer shell be denoted by B0 � R3, and the current (spatial)
con®guration denoted by Bt � R3 (see Fig. 5). Let FFF0: B4B0 be the deformation map from material

Fig. 4. Material con®guration �`�B of layer �`): lateral surface �`�S:
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con®guration B to the initial con®guration B0, such that x0 � FFF0�xxx� 2 B0, where xxx 2 B: Let FFFt: B4Bt

be the deformation map from B to the current con®guration Bt, such that xt � FFFt�xxx� 2 Bt, where xxx 2
B: Further, we de®ne the deformation map FFF: B� R�4R3, such that5

FFF0� � � � FFF� � , 0�, FFFt� � � � FFF� � , t�: �12�
The deformation map for the shell relative to the initial con®guration is denoted by wwwt: B04Bt (see
Fig. 5), with

wwwt � FFFt � FFFÿ10 : �13�
With �`�FFFt: �`�B4R3 being the deformation map for layer �`), we have

FFFt�xxx� � �`�FFFt
�xxx�, 8xxx 2 �`�B, �14�

and also

Fig. 5. Multilayer shell: material con®guration B, initial con®guration B0, and current con®guration Bt:

5 R� is the set of non-negative real numbers.
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�`�wwwt � �`�FFFt � �`�FFFÿ10 : �15�

Now let �`�t: A� R�4S 2 be the director ®eld of layer �`), where S 2 designates the sphere de®ned as

S 2M
�
t 2 R3jktk � 1

	
: �16�

With �`�jjj: A� R�4R3 being the deformation map of the centroidal surface of layer �`), we can now
de®ne the deformation map �`�FFFt in Eq. (14) as follows

�s`�FFFt
�xxx� � �s`�FFF�xxx, t�M�s`�jjj�xxxa, t� �

�
x3 ÿ s�s`�Z

�
�s`�t�xxxa, t�, �17�

which basically describes that the deformed transverse ®ber remains straight, colinear with the layer
director �s`�t, and thus not necessarily perpendicular to the deformed centroidal surface

�`�jjjt
�A� � �`�jjj�A, t� of layer �`). Now, we describe the expression for the deformation map �`�jjj of the

centroidal surface of layer �`), such that continuity across all layers is strictly enforced:

�s`�jjjM�s�`ÿ1��jjj
�s � s�s`�h

ÿs�s`�t, 8xxxa 2A �18�
where

�s�`ÿ1��jjj
�sM�0�jjj� s

24ÿ �0�hÿs�0�t � Xs�`ÿ1�
i�0

�i�H�i�t

35: �19�

Remark 2.3. First, assume that s � �1 in Eq. (18), and consider the positive layer �`� �` > 0� above the
reference layer (0). In this case, the function ��`ÿ1��jjj

� in Eq. (19) represents the deformation map of the top
surface of layer ��`ÿ 1�� (i.e., the layer just below layer �`)). On the other hand, for the negative layer �ÿ`�
(i.e., for s � ÿ1 and ` > 0), �ÿ�`ÿ1��jjjÿ represents the deformation map of the bottom surface of layer
�ÿ�`ÿ 1�� (i.e., the layer just above layer �ÿ`)). Next, the construction of the expression (19) for �s�`ÿ1��jjj�s

begins with the deformation map �0�jjj of the reference layer (0), and followed by the addition of the
transverse ®ber vectors (e.g., �i �H�i �t� of all layers between layer (0) and layer �s`). For example, from Eqs.
(18) and (19), the deformation map for layer (s ) (i.e., layer (+1) or layer (ÿ1 ) (see Fig. 3) is described by

�s�jjj � �0�jjj�s � s�s�h
ÿs
�s�t, �20�

�0�jjj
�s � �0�jjj� s�0�h

�s�0�t: �21�
Take another example; consider layer (+3). Combining the expressions Eqs. (18) and (19), we obtain

�3�jjj �
"
�0�jjj� �0�h��0�t �

X2
i�1
�i�H�i�t

#
� �3�hÿ�3�t, �22�

where we had used relation (4).

Next, we describe the director rotation map �`�LLL: S 24S 2 that maps the material basis vector E3 to
the director �`�t of layer �`). To describe where �`�LLL belongs to, we de®ne

S 2
EM

�
LLL 2 SO�3�jLLLCCC � CCC, 8CCC 2 R3 and CCC�E3 � 0

	
, �23�
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where SO(3) is the special group of proper orthogonal transformations in R3: Thus, LLL 2 S 2
E rotates E3

about axes of rotation perpendicular to E3, and thus induces no rotations about the E3 vector itself. We,
therefore, eliminate the drilling degrees-of-freedom about the directors in this formulation. To each
director ®eld �`�t associated with layer �`), there exists a unique operator �`�LLL 2 S 2

E that maps E3 into �`�t,
i.e.,

�`�t � �`�LLL�E3 �24�

2.2. Principal unknown kinematic ®elds

Basically, the deformation of the multilayer shell can be described by the deformation map �0�jjj of the
reference layer (0) and by the N director rotation maps �`�LLL, for ` 2N: We thus have �1�N�
unknown functions. From the computational viewpoint, we need to introduce the displacement ®eld
Äu: B� R�4Bt

Äu�xxxa, t�M�0�jjj�xxxa, t� ÿ xaEa �) �0�jjj�xxxa, t� � xaEa � Äu�xxxa, t�: �25�
First, de®ne the initial deformation map �0�j0

: A4B0 for the reference layer (0)

�0�jjj0
�xxxa�M�0�jjj�xxxa, 0�: �26�

Similar to Eq. (25), the initial displacement ®eld Äu0: B4B0

Äu0�xxxa�M�0�jjj0
�xxxa� ÿ xaEa �) �0�jjj0

�xxxa� � xaEa � Äu0�xxxa�: �27�

Finally, the displacement ®eld u: B0 � R�4Bt that maps the reference layer (0) from the initial
con®guration B0 to the current con®guration Bt is de®ned as

uM Äuÿ Äu0: �28�
So, the principal unknown kinematic ®elds are the displacement ®eld u, and N director ®elds �`�t, with
` 2N: In terms of components, we therefore have 3�1�N� unknown functions, with independent
variables xxxa 2A and t 2 R�:

Remark 2.4. It should be noted that even though the principal kinematic unknowns are u and �`�t, with
` 2N, the computational kinematic unknowns are not the same. In the computation, we do not compute

�`�t directly, but rather the rotation vector �`�yyy, which then allows the evaluation of the rotation tensor �`�LLL
and then the computation of �`�t following Eq. (24); we refer the reader to Simo and Fox (1989) for the
single-layer case, and to Vu-Quoc et al. (2000c) for the multilayer case. Thus, the computational
kinematic unknowns are u and �`�yyy, with ` 2N:

2.3. Space and time derivatives of kinematic ®elds

In this section, we gather the derivatives of the principal kinematic ®elds, which will be used in
subsequent sections. We begin ®rst with the space derivatives, followed by the time derivatives, and then
the mixed space±time derivatives.

Let �`�gi
be the convected basis vector, in the current con®guration Bt, along the convected coordinate

xi, and de®ned as
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�`�gi
�xxx, t�M@ �`�FFF�xxx, t�

@xi

M

�`�FFF,i
�xxx, t�, 8i 2 f1, 2, 3g, 8` 2N: �29�

Next, we distinguish the case where i � 1, 2 and i � 3 in Eq. (29) to relate the convected basis vectors

�`�gi
to the principal kinematic ®elds de®ned earlier. Using Eqs. (17) and (29), we obtain

�s`�ga � �s`�jjj,a �
�
x3 ÿ s�s`�Z

�
�s`�

t,a, 8a 2 f1, 2g, 8s` 2N, �30�

�`�g3
� �`�t, 8` 2N: �31�

The space derivative of �s`�jjj in Eq. (30) is then related to the principal kinematic ®elds by using Eqs.
(18), (19) and (25) to obtain

�0�jjj,a � Ea � Äu,a, �32�

�s`�jjj,a � �s�`ÿ1��jjj�s,a � s�s`�h
ÿs�s`�t,a, 8xxxa 2A, �33�

where

�s�`ÿ1��jjj
�s
,a � �0�jjj,a � s

24ÿ �0�hÿs�0�t,a � Xs�`ÿ1�
i�0

�i�H�i�t,a

35: �34�

The convected basis vectors for layer �`� in the initial con®guration B0 are denoted by �`�GI, and are the
basis vectors �`�gI

in Eq. (29) at t � 0

�`�GI
�xxx�M�`�gI

�xxx, 0� � �`�FFF,I
�xxx, 0� � �`�FFF0, I

�xxx�, 8I 2 f1, 2, 3g, 8` 2N, �35�

where �`�FFF0 was de®ned in Eq. (12). The basis vectors dual to f�`�gi
g and to f�`�GIg are de®ned by the

orthogonality conditions

h�`�gi, �`�gj
i � dij, h�`�GI, �`�GJi � dIJ, �36�

where h�, �i is the inner (dot) product in R3 and dij the Kronecker delta.

Remark 2.5. It is noted that �`�g3 6��`�g3
� �`�t, in general, such that we always have �`�g3��`�g3

� 1, and
k�`�g3k6�k�`�g3

k � k�`�tk � 1

The gradient of the deformation map �`�wwwt in Eq. (15), with respect to the convected coordinates xxx,
denoted by �`�F, is obtained as follows

�`�F � GRAD�`�wwwt � GRAD�`�FFFt �
�
GRAD�`�FFF0

�ÿ1: �37�

In component form, we have

GRAD�`�FFFt � diJ �`�gi

 EJ,

�
GRAD�`�FFF0

�ÿ1� dIJEI 
 �`�GJ: �38�

It follows that with respect to the convected basis vectors, the deformation gradients �`�F and �`�Fÿ1

have the following component form
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�`�F � diJ �`�gi

 �`�GJ, �`�F

ÿ1 � dIj �`�GI 
 �`�g j: �39�

The Jacobian determinants related to the deformation maps �`�FFF0, �`�FFFt, and �`�wwwt are given below

�`�j0Mdet
�
GRAD�`�FFF0

� � ÿ�`�G1 � �`�G2

���`�G3, �40�

�`�jtMdet
�
GRAD�`�FFFt

� � ��`�g1
� �`�g2���`�g3

, �41�

�`�JtMdet
�
GRAD�`�wwwt

� � �`�jt
�`�j0

, �42�

where Eq. (42) is obtained from Eqs. (40) and (41) and from Eq. (37).
Now, we record the results related to the time derivative. From Eqs. (28), (25) and (27), we have

Çu � ÇÄu � 0 Çjjj, Èu � ÈÄu � �0� Èjjj: �43�

Let us write the combined space and kth time derivative of, say, �0�jjj as

�0�jjj,a

fkg
M

@

@xa
@k

@ tk �0�
jjj, �44�

for a � 0, 1, 2 and k � 0, 1, 2, where the case with a � 0 or k � 0 means taking no derivative. Then,
using Eqs. (44) and (43) in Eqs. (18) and (19), we obtain

�s`� jjj
fkg

,aM �s�`ÿ1��jjj�s
fkg

,a|�������{z�������}
�1�

� s�s`�h
ÿs�s`� t

fkg
,a|����������{z����������}

�2�

, 8xa 2A �45�

where

�s�`ÿ1��jjj�s
fkg

,aM u
fkg

,a|{z}
�1�

� s

26664ÿ�0�hÿs�0� t
fkg

,a|����������{z����������}
�2�

�
X�sÿ`�
i�0
�i�H�i�

t
fkg

,a|����������{z����������}
�3�

37775, �46�

for k � 0, 1, 2 and a � 0, 1, 2:

Remark 2.6. To make it easy to understand relations (45) and (46), we give below some particular
examples. First, for �`� � 0 (reference layer), k � 1, and a � 0, we obtain from Eqs. (45) and (46) using
Remark 2.2 (the summation term does not exist for ` � 0�

�0� Çjjj � Çu: �47�
Next, for `=1, k=1, and a=0, we obtain from Eqs. (45) and (46) using Eq. (4)

�1� Çjjj � Çu� �0�h��0�Çt � �1�hÿ�1�Çt: �48�

The time rate of the director �`�t is related to the angular velocity vector �`�ooo, which is perpendicular to

�`�t, as follows
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�`�Çt � �`�ooo� �`�t, �`�Èt � �`� Çooo� �`�t � �`�ooo� ��`�ooo� �`�t�, �`�ooo��`�t � 0: �49�
Based on Eq. (39)1, the time derivative of the layer deformation gradient �`�F takes the form

�`� ÇF � diJ �`� Çgi

 �`�GJ, �50�

where the computation of �`� Çgi
is based on Eqs. (30), (31), (45) and (46).

3. Equations of motion

We derive the equations of motion for multilayer geometrically-exact structures based on the principle
of virtual power, as pioneered for sandwich beams in Vu-Quoc and EbciogÆ lu (1995). Here, we generalize
the equations for geometrically-exact sandwich shells derived in Vu-Quoc et al. (1997b) to the case of
multilayer shells with unlimited number of layers and with arbitrary reference layer (0). For
computational formulation, the weak form is readily obtained from the balance of power.

3.1. Power of contact forces/couples

The shell resultant stresses and resultant couples, and their respective conjugate strain measures can
be obtained by reducing the expression of the stress power from an integration over a 3D domain of the
shell to an integration over the 2D domain of its material surface. Let P be the ®rst Piola±Kirchho�
stress tensor, then the power of contact forces (or stress power) in the shell expressed in the initial
con®guration B0 is

PcM
�

B0

P � � ÇF dB0, �51�

where dB0 is the in®nitesimal volume in the initial con®guration B0:
6

The ®rst Piola±Kirchho� stress tensor �`�P in layer �`� can be written as (see, e.g., Malvern, 1969, p.
222)

�`�P � �`�Jt�`�Fÿ1��`�sss, �52�
where �`�Jt is de®ned in Eq. (42), �`�Fÿ1 in Eq. (39), and �`�sss is the Cauchy stress tensor in layer �`�:
Using expression (39) for �`�Fÿ1, the ®rst Piola±Kirchho� stress tensor �`�P � �`�PIj�`�GI 
 �`�gj

can be
expressed as

�`�P � �`�Jt
h
dIi �`�GI 
 �`�gi

i
�
h
�`�s

jk�`�gj

 �`�gk

i
� �`�JtdIi �`�sij�`�GI 
 �`�gj

: �53�

With �`� ÇF given in Eq. (50), we obtain the following stress power per unit reference volume for layer �`�

�`�P � ��`� ÇFM�`�Jt
h�

dIi �`�GI 
 �`�gi
�
��`�sss

i
��
h
dkJ �`� Çgk


 �`�GJ
i

6 The horizontal double contraction ``��'' in Eq. (51) is de®ned as follows. Let feag be a set of ®xed cartesian spatial basis vectors.

With P and ÇF expressed in the bases feag and fEAg as P � PAaEA 
 ea and ÇF � _F
a

Aea 
 EA, we have P � � ÇF � PAa _F
a

A (see Malvern,

1969, p. 35). Note that the convention for the matrix representation of these tensors are as follows: In PAa, A is the row index,

and a the column index, whereas in _F
a

A, a is the row index, and A the column index.
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� �`�JtdIidkJ
�
�`�GI��`�GJ

�
�`�g

i��`�sss��`� Çgk

� �`�Jt�`�gi��`�sss��`� Çgi
, �54�

in which we had used �`�GI��`�GJ � dJI , according to Eq. (36)2. The stress power for the multilayer shell
can now be obtained as

PcM
�
B0

P � � ÇF dB0 �
X
`2N

�
�` �B0

�`�P � ��`� ÇF d�`�B0

�
X
`2N

�
�` �B0

�`�Jt�`�g
i��`�sss��`� Çgi

d�`�B0, �55�

where �`�B0 designates the initial con®guration for layer �`), and d�`�B0 the in®nitesimal initial volume in
layer �`).7 Using the de®nition of �`�Jt in Eq. (42) and of �`�jt in Eq. (41), and by the conservation of
mass, we have

�`�Jt d�`�B0 � d�`�Bt � �`�jt d�`�B, �56�

where d�`�Bt and d�`�BMdA dx3 (with dA � dx1 dx2� are the in®nitesimal volumes of layer �`� in Bt and
in B, respectively. Using the de®nition (8)1 of the material domain �`�B, the de®nitions (30) and (31) of
the basis vector �`�gi

, and expression (56) above, the stress power (55) is now expressed in the material
domain as follows8

PcM
X
s`2N

�
A

�
�s` �H

�s`�jt

nÿ
�s`�g

a��s`�sss
��h�s`� _jjj,a �

�
x3 ÿ s�s`�Z

�
�s`�Çt,a

i
� �s`�g3��s`�sss��s`�Çt

o
dA dx3: �57�

Using the following de®nition of the weighted resultant force �`�na, the weighted resultant couple �`� Äma,
and the weighted resultant director couple �`�`,

�`�n
aM

�
�`�H

�`�jt�`�g
a��`�sss dx3, 8` 2N, �58�

�s`� ÄmaM
�
�` �H

�s`�jt

�
x3 ÿ s�s`�Z

�
�s`�g

a��s`�sss dx3, 8s` 2N, �59�

�`�`M
�
�` �H

�`�jt�`�g
3��`�sss dx3, 8` 2N, �60�

the stress power (57) can be simpli®ed as

7 See Eq. (8)2 for the de®nition of the material con®guration �`�B of layer �`).
8 There are some misprints in Eq. (38), p. 2525, in Vu-Quoc et al. (1997b), which is the restriction of Eq. (57) to the case of sand-

wich shells: �`�t should be �`�g3:
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Pc �
X
`2N

�
A

24 �`�na � �`� _jjj,a|��������{z��������}
�1�

� �`� ~ma � �`�_t,a|�������{z�������}
�2�

� �`�` � �`�_t|����{z����}
�3�

35 dA: �61�

Remark 3.1. The integration in Eq. (61) is carried out on the material con®guration B, and not on the
current con®guration Bt:

Remark 3.2. Note that our de®nition of the resultant tensors �`�na, �`� Äma, �`�` shown above corresponds to
the weighted resultant tensors9 known as the ``weighted surface tensors'' in Green and Zerna (1968, p.
375), and di�er from the resultant tensors na, Äma, `̀̀̀ de®ned in Simo and Fox (1989, p. 282) by a factor
1=�j, where

�`� �jtM�`�jt
���
x3��` �Z

, �62�

i.e., the value of the Jacobian �`�jt (de®ned in Eq. (41)) at the neutral surface of layer �`� (de®ned in Eq.
(3)). In fact, among the above three weighted resultant tensors, only our resultant �`�na has the following
equivalent in Green and Zerna (1968, p. 375, Eq. (10.2.8)1)

Na �
��1=2�t
ÿ�1=2�t

Ta dy3,

where Ta is exactly the same as ��`�jt�`�ga��`�sss� in our notation. On the other hand, Green and Zerna (1968)
did not have the equivalent of the other two weighted resultant tensors, i.e., �`� Äma and �`�`: The de®nition of
na in Simo and Fox (1989) corresponds to the quantity Na=

���
a
p

used in the de®nition of the ``stress
resultant'' n in Green and Zerna (1968, p. 377, Eq. (10.2.18)1), as reproduced below

n � naNa���
a
p ,

where
���
a
p

is the same as �j: See also Remark 4.1 on the de®nitions of the resultant moments. An advantage
of our de®nition is that it simpli®es signi®cantly the equations of motion for multilayer shells to be
presented in Section 3.4. In particular, �`� Äma is the weighted resultant couple, and not the true resultant
couple �`�ma to be introduced later in Eq. (133)1. For more details on the dimensions of these tensors, we
refer the readers to Vu-Quoc et al. (1997b). Note that even though integrated in the material con®guration
B, the weighted resultant tensors are actually spatial tensors de®ned on the current con®guration Bt:

Remark 3.3. It should be noted that for i 2 f1, 2, 3g ®xed, the normal �`�gi is in general di�erent for
di�erent layer �`), i.e., �p�gi 6��q�gi, for p 6�q: It follows that the same remark applies to all weighted resultant
tensors �`�na, �`� Äma, �`� `̀̀̀:

Remark 3.4. The power Pc in Eq. (61) of contact forces/couples is expressed with respect to the weighted
resultant tensors explained in Remark 3.2. For computation, we need to account for the constitutive
restriction in Pc, which can then be expressed in terms of physical quantities such as the membrane forces,
moments, and shear forces, which are conjugate to the rate of membrane strains, curvatures, and shear

9 Weighted tensors are also called relative tensors; see, e.g., McConnell (1957).
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strain, as will be shown later in Section 4.3.

Next, to derive the equations of motion in terms of the weighted resultant tensors, called the weighted
resultant equations of motion, we express the power Pc in terms of the time rate of the principal
unknown kinematic quantities u and �`�t, for ` 2N, which are discussed in Section 2.2. The
methodology employed here follows closely that are presented in Vu-Quoc and EbciogÆ lu (1996) for
multilayer beams.

First, we consider the terms in Eq. (61) with factors Çu,a; these terms come from Part [1] of Eq. (61),
due to the expression of �s`� Çjjj,a

as given in Part [1] of Eqs. (45) and (46). These terms constitute the
linear momentum part of the stress power Pc, and is de®ned as follows

LM
�

A
Ãna� Çu,a dA, ÃnaM

X
`2N

�`�n
a, �63�

where Ãna represents the total resultant contact force. So now, to have the above expression for L in
terms of the time rate Çu, we integrate by parts to obtain

L �
�
@A

Ãna� Çu�0�na d�@A� ÿ
�

A
Ãna
,a� Çu dA, �64�

where we have made use of Eq. (11).
Next, we consider the weighted angular momentum terms for Pc for the reference layer (0) in

expression (61). To this end, we consider the terms with factors �0�Çt and �0�Çt,a in Eq. (61):10

�0�@M
�

A

" 
Ma|{z}
�1�
� �0� ~ma|�{z�}

�2�

!
� �0�_t,a � �0�` � �0�_t|����{z����}

�3�

#
dA: �65�

where

MaM�0�h
�XN̂

j�1
�j�na ÿ �0�hÿ

XÿN
�

j�ÿ1
�j�na �

X
s`2Nnf0g

s�0�h
�s�s`�n

a �66�

is the total moment of the resultant forces �`�na of all top layers with respect to the top surface of the
reference layer (0), and of all bottom layers with respect to the bottom surface of the reference layer (0).
In Eq. (65), Parts [1], [2], [3] come from Parts [1], [2], [3] of Eq. (61), respectively. To be more speci®c,
Part [1] of Eq. (65) comes from Part [1] of Eqs. (61) and (45) with k � 1, and Parts [2] and [3] of Eq.
(46), and the de®nition of �i �H in Eq. (4). Note that in the de®nition of Ma in Eq. (66), the resultant

�0�na of layer (0) is absent in the summation since when ` � 0 there is a cancellation of Part [2] in Eq.
(45) �` � 0� and Part [2] in Eq. (46), keeping in mind that Part [3] is nonexistent for ` � 0 due to
Remark 2.2.

To have �0�Çt as the common factor in the expression for �0�@, we integrate by parts the ®rst term of
Eq. (65), i.e., Parts [1] and [2], to obtain

�0�@ �
�
@A

ÿ
Ma � �0� Äma���0�Çt�0�na d�@A� ÿ

�
A

hÿ
Ma � �0� Äma�

,aÿ�0�`
i
��0�Çt dA: �67�

10 The Hebrew character `aleph @ is the equivalent form of the Latin character A, which is mnemonic for ``angular''.
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We introduce the following functions �0�M
a
: @A4R and �0�M : A4R to write Eq. (67) in a more

compact form as follows

�0�@ �
�
@A
�0�M

a��0�Çt�0�na d�@A� ÿ
�

A
�0�M ��0�Çt dA: �68�

Now we consider the terms in the mechanical power (61) that have �s`�Çt and �s`�Çt,a, 8s` 2Nnf0g, as
factors. For convenience in presenting the equations, we introduce the following de®nitions. Let us
combine the top-layer number and the bottom-layer number into the compact expression sN de®ned as

sNM

(
N̂, for s � �1,
ÿN

�
, for s � ÿ1: �69�

Consider layer �s`); let �s`�Na be the resultant force, acting on the facet with normal �s`�ga of layer �s`),
due to the contribution from layer �s�`� 1�� to layer �sN� (see also Fig. 6 for a geometric representation
of �s`�Na):11

�s`�N
aM

XsN
i�s�`�1�

�i�n
a, 8s` 2Nnf0g: �70�

From Eq. (61), we obtain the following weighted angular momentum for layer �s`), with s` 2Nnf0g,
having terms with factors �s`�Çt and �s`�Çt,a

Fig. 6. Meaning of coupling terms: For layer (0) (left ®gure), take moment about layer center. For upper layer �`� (right ®gure),

take moment about bottom hinge.

11 That is, in Eq. (70), if s � �1 (i.e., upper layer), then i � �`� 1�, . . . ,N̂; if s � ÿ1 (i.e., lower layer), then

i � ÿ�`� 1�, . . . ,ÿN
�
:
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�s`�@M
�

A

8<:s
"
�s`�h

ÿs�s`�n
a|��������{z��������}

�1�

� �s`�H�s`�Na|�������{z�������}
�2�

#
� �s`�_t,a � �s`� ~ma � �s`�_t,a|��������{z��������}

�3�

� �s`�` � �s`�_t|�����{z�����}
�4�

9=; dA, �71�

where Part [1] of Eq. (71) comes from Part [1] of Eq. (61) and Part [2] of Eq. (45) with k � 1; Part [2] of
Eq. (71) comes from Part [1] of Eq. (61) and Part [3] of Eq. (46) (see Remark 3.5); Parts [3] and [4] of
Eq. (71) come from Parts [2] and [3] of Eq. (61), respectively.

Remark 3.5. Note that Part [2] in Eq. (71) is made up of the contributions of layers f�s��`� � 1��, . . . ,sNg to
layer �s`� as shown in the de®nition of �s`�Na in Eq. (70). To understand Eq. (70), consider the special case
where s` � ^̀ > 0 in both Eqs. (71) and (70). Recall that to obtain Part [2] in Eq. (71), we need to gather
all terms in Eq. (61) having � ^̀�Çt,a as a factor. To this end, consider the summation with index ` in Eq. (61).
When `R ^̀, there is no term in Part [3] of (46) �k � 1� having � ^̀�Çt,a as a factor, since the upper limit of the
summation is strictly less than ^̀: For ` > ^̀, i.e., ` � � ^̀� 1�, . . . ,N̂, there is the term � ^̀�H� ^̀�Çt,a in Part [3] of
Eq. (46) �k � 1). Thus picking out all terms having � ^̀�Çt,a as a factor in Part [1] of Eq. (61), i.e.,P
�`�2N�`�n

a��`� Çjjj,a
, we have0@ XN̂

`� ^̀�1
�`�n

a

1A�� ^̀�Çt,a � � ^̀�Na�� ^̀�Çt,a: �72�

Generalizing the above result to both top and bottom layers, we obtain Eq. (70) and Part [2] of Eq. (71).

To have �s`�Çt as the common factor, we integrate by parts the ®rst three terms in the integrand of Eq.
(71) to obtain

�s`�@ �
�
@A

�
s
ÿ
�s`�h

ÿs�s`�n
a � �s`�H�s`�Na�� �s`� Äma���s`�Çt�0�na d�@A� ÿ

�
A

n�
s
ÿ
�s`�h

ÿs�s`�n
a

� �s`�H�s`�Na�� �s`� Äma�
,a��s`�Çt ÿ �s`�` � �s`�Çt

o
dA, �73�

where we have made use of Eq. (11). Similarly to Eq. (68), we introduce for layer �s`� the following
functions �s`�M

a
: @A4R and �s`�M : A4R to write Eq. (73) in a more compact form as follows

�`�@ �
�
@A
�`�M

a��`�Çt�0�na d�@A� ÿ
�

A
�`�M ��`�Çt dA: �74�

The power of the resultant contact forces/couples (or stress power) in Eq. (61) can now be expressed in
terms of the newly de®ned quantities as follows

Pc �L�
X
�`�2N

�`�@, �75�

where L is the linear momentum part in Pc de®ned in Eq. (64), and �`�@ the angular momentum part
for layer �`� in Pc de®ned in Eqs. (68) and (74).

3.2. Rate of kinetic energy

For each layer �`), let �`�v: �`�Bt � R�4T�`�Bt be the spatial velocity ®eld on the spatial tangent
bundle T�`�Bt, and �`�rt: �`�Bt � R�4R the mass density de®ned on �`�Bt: The kinetic energy of the
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multilayer shell can be written as

K � 1

2

X
`2N

�
�` �Bt

�`�rt�`�v � �`�v d
ÿ
�`�Bt

�
: �76�

By the Reynolds transport theorem and the conservation of mass (e.g., Malvern, 1969, p. 210) we obtain
the material derivative of the kinetic energy in Eq. (76) as

dK
dt
�
X
`2N

�
�`�Bt

�`�rt�`�a��`�v d
ÿ
�`�Bt

�
, �77�

which when expressed in the material con®guration B yields

dK
dt
�

X
�`�2N

�
A

�
�` �H

�`�rt�`�A��`�V�`�jt dA dx3, �78�

where �`�jt is the Jacobian determinant Ð de®ned in Eq. (41) Ð of the deformation map �`�FFF for layer
�`� given in Eq. (17), whereas �`�A: B� R�4TBt and �`�V: B� R�4TBt are the material acceleration
and material velocity expressed in terms of the material con®guration B, and is related to �`�FFF by (see,
e.g., Marsden and Hughes, 1983)

�`�V�xxx, t�M
@ �`�FFF�xxx, t�

@t
� �`� ÇFFF�xxx, t�, �`�A�xxx, t�M

@ 2�`�FFF�xxx, t�
@t2

� �`� ÈFFF�xxx, t�: �79�

Since we want to integrate Eq. (78) in the thickness coordinate x3 to obtain an expression for the rate of
kinetic energy in terms of an integral over the material area A. To this end, we introduce the
deformation map �`�ccc: �`�B� R�4R3, and rewrite Eq. (17) as follows

�`�FFFt
�xxx� � �`�ccct

�xxxa� � x3�`�t�xxxa�, 8` 2N, �80�

where from Eqs. (80) and (17), we have12

�s`�cccM�s`�jjjÿ s�s`�Z�s`�t: �81�
Next, to have an expression for �`�jjj in terms of the surface material coordinates xxxa, the displacement
®eld Äu de®ned in Eq. (25), and the layer directors �`�t, we make use of the de®nition of �`�Z in Eqs. (5)
and (6), and the expression for �`�jjj in Eqs. (18) and (19) to obtain

�0�ccc � �0�jjj � xaEa � Äu�xxxa, t�, �82�
and

�s`�ccc � �0�jjj� s

(
�0�h
�s��0�t ÿ �s`�t� �

Xs�`ÿ1�
i�s
�i�H��i�t ÿ �s`�t�

)
, 8s` 2Nnf0g: �83�

12 Recall that �`�ccct
�xxxa� � �`�ccc�xxxa, t�:
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Remark 3.6. Note that Eq. (82) is actually a particular case of Eq. (83) by Remark 2.2, since for ` � 0,
the term with the summation sign in Eq. (83) does not exist, thus making the whole expression in curly
brackets in Eq. (83) vanishes. For s` � �1, we obtain from Eq. (83) the following expression

�1�ccc � �0�jjj� �0�h���0�t ÿ �1�t�, �84�
which is the same as in Vu-Quoc et al. (1997, p. 2528, Eq. (61)).

Next, using Eqs. (79) and (80) in Eq. (78), we obtain the following expression of rate of kinetic energy

dK
dt
�
X
`2N

�
A

h
�`�f��`� Çccc� �`�g��`�Çt

i
dA, �85�

where �`�f and �`�g are the inertia force and inertia couple for layer �`�, respectively, and are given by

�`�fM�`�A
0
r�`�

Èccc� �`�A1
r�`�Èt, �`�gM�`�A

1
r�`�

Èccc� �`�A2
r �`�Èt, 8�`� 2N, �86�

with �`�Ak
r, for k � 0, 1, 2, being the kth mass moments de®ned as follows

�`�A
k
rM

�
�` �H

�`�rt
ÿ
x3
�k
�`�jt dx3: �87�

Note that, for layer �`�, the quantity �`�A0
r is the mass per unit undeformed area, �`�A1

r the mass moment
per unit undeformed area, and �`�A2

r the mass moment of inertia per unit undeformed area.
Next, we want to express Eq. (85) in terms of the time rate of the principal kinematic quantities, i.e.,
f Çu, �`�Çt, 8` 2Ng: To this end, we need to express �`� Çccc in the ®rst term of Eq. (85) in terms of f Çu, �`�Çtg:
Such expression is readily obtained from Eqs. (82) and (83), bearing in mind Eq. (43)1. Note that Eq.
(83) can be rewritten using the de®nition of �s`�Y in Eq. (6)2 as follows

�`�ccc � �0�jjj� s

(
�0�h
�s�0�t ÿ �s`�Y�s`�t �

Xs�`ÿ1�
i�s
�i�H�i�t

)
: �88�

With the following de®nition of the total resultant inertia force Ãf

ÃfM
X
`2N

�`�f, �89�

together with Eqs. (82), (88) and (47), we can rewrite Eq. (85) as follows

dK
dt
�
�

A

8>>><>>>:
Ãf � _u�

"
�0�g�

X
s`2Nnf0g

s�0�h
�s
�s`�f

#
� �0�_t �

X
s`2Nnf0g

�
�s`�gÿ s�s`�Y�s`�f

� � �s`�_t|���������������������������{z���������������������������}
�1�

�
X

s`2Nnf0g

Xs�`ÿ1�
i�s

s�i�H�s`�f � �i�_t|���������������������{z���������������������}
�2�

9>>>=>>>;
dA: �90�
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Remark 3.7. In Part [2] of Eq. (90), due to the upper limit of index i in the second summation, i.e.,
s�`ÿ 1�, by Remark 2.2, the index s` in the ®rst summation e�ectively starts with 22, and not with 21:

We need to rewrite Part [2] of Eq. (90) so to combine with Part [1]. The layer index in �i �Çt in Part [2]
of Eq. (90) is i, instead of s` as in Part [1]. Thus, we want to express Part [2] of Eq. (90) in terms of �s`�Çt,
as in Part [1]. To this end, de®ne

S�i��s`�Ms�i�H�s`�f � �i�Çt: �91�

Lemma 3.1. The following interchanging of summation indices holds

X
s`2Nnf0g

Xs�`ÿ1�
i�s

S�i��s`� �
X

s`2Nnf0, sNg

XsN
i�s�`�1�

S�s`��i�: �92�

Proof. See Vu-Quoc and EbciogÆ lu (1996, Remarks 3.6 and 3.7, p. 400).

With

S�s`��i� � s�s`�H�i�f � �s`�Çt, �93�

we can rewrite Eq. (90) with the aid of Lemma 3.1 as follows

dK
dt
�
�

A

�
Ãf � _u

�
�
X
`2N

�`�C � �`�Çt dA, �94�

where the total resultant inertia force Ãf had been de®ned in Eq. (89), and the inertia couples �`�C for
layer �`� are given below. For the reference layer (0),

�0�C � �0�g�
X

s`2Nnf0g
s�0�h

�s
�s`�f: �95�

For any other layers, excluding layer (0) and the top and bottom layers �sN), i.e., 8s` 2Nnf0; sNg,

�s`�C � �s`�gÿ s�s`�Y�s`�f� s�s`�H
XsN

i�s�`�1�
�i�f: �96�

For the top and bottom layers �sN),

�sN�C � �sN�gÿ s�sN�Y�sN�f: �97�

Remark 3.8. Note that actually Eq. (97) is a particular case of Eq. (96), since when s` � sN in Eq. (96),
the third summation term does not exist, since the lower bound of the summation index i is s�N� 1�, which
is clearly out of bound.
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Remark 3.9. From Eqs. (95)±(97), we recover the expressions for the inertia couples derived for sandwich
shells in Vu-Quoc et al. (1997b, p. 2530, Eq. (75)).

3.3. Power of assigned forces/couples

Parallel to the power of Pc contact forces in Eq. (51) for the 3D shell body, expressed in the initial
con®guration B0, is the power Pa of the assigned forces given in the current con®guration Bt as follows

Pa �
�
@Bt

�n � sss�� � v d�@Bt� �
�

Bt

rtbt�v dBt, �98�

where n designates the normal to the boundary @Bt, sss� the assigned traction on the boundary @Bt, v
the velocity ®eld on the current con®guration Bt, rt the mass density in Bt, and bt is the body force
assigned on Bt, with dBt � jtdB: The expression for Pa can be recast in the material con®guration as
follows

Pa �
�
@B
�N�P���V d�@B� �

�
B
rBt�V dB M�T�Pa � �B�Pa, �99�

where N is the normal on the material boundary @B, P� the ®rst Piola±Kirchho� stress tensor
corresponding to sss�, V the material velocity ®eld as de®ned in Eq. (79)1, r � rtjt the mass density in the
material con®guration B, and Bt � bt � FFFt the body force expressed in B, i.e., Bt�xxx� � bt�FFFt�xxx��: In Eq.
(99), �T�Pa denotes the power of the assigned Traction forces, and �B�Pa the power of the assigned Body
forces. Note that we have the following decomposition of the material con®guration

B �A�H, @B � S [A� [Aÿ, �100�
as already mentioned in Eq. (8)2, with the lateral surface S de®ned in Eq. (10), and where the top facet
A� and the bottom facet Aÿ of B are de®ned in a succinct manner as

AsM
�
xxx �

ÿ
xxxa, x3

�
2 Bjxxxa 2A, x3 � sH s

	
, �101�

with H s being the distance from the reference surface to the top or bottom facet, i.e.,

H sM�sN�Z� �sN�hs > 0, �102�
where sN was de®ned in Eq. (69).

The integral in the power �T�Pa due to assigned traction force on the boundary @B can be
decomposed into three integrals, according to Eq. (100)2, as follows

�T�Pa � �T1�Pa � �T2��Pa � �T2ÿ�Pa, �103�
where �T1�Pa is the contribution from the lateral surface boundary S, �T2��Pa from the top facet A�,
and �T2ÿ�Pa from the bottom facet Aÿ: Using Eqs. (9) and (10), we can write �T1�Pa as follows

�T1�Pa �
�
@A

X
`2N

�
�` �H

ÿ
�`�N��`�P�

���`�V dx3 d�@A�: �104�

It can be seen from the de®nition of the material velocity �`�V in Eqs. (79)1 and (80) that �`�V depends
on the transverse material coordinate x3: Let us introduce the following de®nition of resultant force and
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resultant couple

�T1�
�`� n

�
M
�
�` �H

�`�N��`�P� dxxx3, �T1�
�`� m

�
M
�
�` �H

ÿ
�`�N��`�P�

�
xxx3 dxxx3: �105�

Next, using Eqs. (79)1, (80), (82) and (83), and Lemma 3.1, we can write �T1�Pa in Eq. (104) as follows

�T1�Pa �
�
@A

 X
`2N

�T1�
�`� n

�
!
� Çu d�@A� �

�
@A

"
�T1�
�0� m

� �
X

s`2Nnf0g
s�0�h

�s�T1�
�s`� n

�
#
��0�Çt d�@A�

�
�
@A

X
s`2Nnf0, sNg

24�T1��s`�m� ÿ s

 
�0�h
�s �

Xs�`ÿ1�
i�s
�i�H

!
�T1�
�s`� n

� � s�s`�H
XsN

i�s�`�1�

�T1�
�i� n

�
35��s`�Çt d�@A�

�
�
@A

X
s2fÿ1, �1g

24�T1��sN�m� ÿ s

0@�0�h�s � Xs�Nÿ1�
i�s

�i�H

1A�T1��sN�n�
35��sN�Çt d�@A�: �106�

Now, the contribution to the power �T �Pa by the assigned traction on the top facet �x3 � �H �� and on
the bottom facet �x3 � ÿH ÿ� can be written in concise form as follows

�T2s�Pa �
�

A

�ÿ
�sN�N��sN�P�

���sN�V����
x3�sH s

dA: �107�

Introducing the following de®nition

�T2s�
�sN� n

�
M
ÿ
�`�N��`�P�

����
x3�sH s

, �T2s�
�sN�m

�
M
�
x3�`�N��`�P�

�����
x3�sH s

, �108�

we can then rewrite Eq. (107) in the following form

�T2s�Pa �
�

A

n
�T2s�
�sN� n

���sN� Çccc� �T2s��sN�m
���sN�Çt

o
dA, �109�

where �sN� Çccc can be expressed in terms of Çu and �i �Çt using Eq. (83). Next, the contribution to the power
Pa by the assigned body force, i.e., �B �Pa in Eq. (99), has exactly the same expression as that for �T1�Pa

in Eq. (106), except that the left superscript [T1] should be replaced with [B ], and �B ��`� n
�
and �B ��`�m

�
are

de®ned as follows

�B�
�`�n
�
M
�
�` �H

rBt dx3, �B�
�`�m

�
M
�
�` �H

rBtx
3 dx3: �110�

Finally, we collect the terms with the factor Çu, and the terms with the factor �i �Çt in the combined
expression for the power Pa: The result is presented below.

On the boundary @A of the shell, we introduce the assigned force n�a: @A� R�4R3, such that n� �
n�a�0�na, and the assigned couple �`� Äm�a: @A� R�4R3 for layer �`). In the interior A of the shell, let
n�: A� R�4R3 be the distributed assigned force on the centroidal surface of the reference layer (0),
and �`� Äm�: A� R�4R3 the distributed assigned couple on the centroidal surface of layer �`). The power
of the assigned forces and couples is then written as
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Pa �
�
@A

"
n�a� Çu�

X
`2N

�`� Äm�a��`�Çt
#
�0�na d�@A� �

�
A

"
n�� Çu�

X
`2N

�`� Äm���`�Çt
#

dA, �111�

where we have made use of Eq. (11).

Remark 3.10. Note that the assigned forces and couples n�a, �`� Äm�a, n�, �`� Äm� are spatial tensors similar to
the de®nition of the spatial tensors �`�na, �s`� Äma in Eqs. (58) and (59). The integration in Eq. (111) is
carried out, however, in the material con®guration B:

In terms of the assigned traction and assigned body force, we have the following expression for n�

n� � n�a�0�na �
X
`2N

�T1�
�`� n

�
on @A, �112�

n� �
X

s2fÿ1, �1g

�T2s�
�sN� n

� �
X
`2N

�B�
�`�n
�

in A: �113�

We will give below the expressions for �`� Äm� on @A ®rst and then in A: By noting that �`� Äm���`� Äm�a�0�na
on the boundary @A, we obtain from the expression (106), for �T1�Pa, the following

�0� Äm� � �T1��0� m
� �

X
s`2Nnf0g

s�0�h
�s �T1�
�s`� n

� �114�

for layer (0),

�s`� Äm� � �T1��s`�m
� ÿ s

 
�0�h
�s �

Xs�`ÿ1�
i�s
�i�H

!
�T1�
�s`� n

� � s�s`�H
XsN

i�s�`�1�

�T1�
�i� n

� �115�

for s` 2Nnf0; Ng, and

�sN� Äm� � �T1��sN�m
� ÿ s

0@�0�h�s � Xs�Nÿ1�
i�s

�i�H

1A�T1��sN�n� �116�

for the top or bottom layer. Next, inside A, the expressions for �`� Äm� come from �T2��Pa,
�T2ÿ�Pa, and

�B �Pa: From the expression for �T2s�Pa in Eq. (107) (after full expansion in terms of Çu and �i �Çt as
indicated above) and from the expression for �B �Pa (which is similar to that of �T1�Pa), we obtain the
following

�0� Äm� �
X

s2fÿ1, �1g
s�0�h

�s�T2s�
�sN� n

� � �B��0�m
� �

X
s`2Nnf0g

s�0�h
�s�B�
�s`�n

� �117�

for layer (0),

�s`� Äm� � s�s`�H
�T2s�
�sN� n

� � �B��s`�m
� ÿ s

 
�0�h
�s �

Xs�`ÿ1�
i�s
�i�H

!
�B�
�s`�n

� � s�s`�H
XsN

i�s�`�1�

�B�
�i� n
� �118�

for s` 2Nnf0; sNg, and
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�sN� Äm� � �T2s��sN�m
� ÿ s

0@�0�h�s � Xs�Nÿ1�
i�s

�i�H

1A�T2s��sN� n
� � �B��sN�m

� ÿ s

0@�0�h�s � Xs�Nÿ1�
i�s

�i�H

1A�B��sN�n� �119�

for the top or bottom layer.

3.4. Equations of motion in weighted resultants

We are now ready to present the equations of motion in terms of the weighted resultants based on the
balance of power

d

dt
K�Pc � Pa, �120�

where the time rate of the kinetic energy dK=dt is given in Eq. (94), the power Pc of contact forces/
couples given in Eq. (75), and the power Pa of assigned forces/couples given in Eq. (111).

Remark 3.11. The balance of power (120) corresponds to the Theorem of Power Expended in Gurtin (1981,
p. 180), which states that the power Pa expended on the body Bt by the assigned forces/couples is equal to
the stress power Pc plus the rate of change of the kinetic energy dK=dt:

We now transform Eq. (120) into an expression of balance of virtual power, as enunciated in the
principle of virtual power below

P�i �P�c � P�a , �121�
where P�i designates the virtual power of inertia forces/couples, P�c the virtual power of contact forces/
couples, and P�a the virtual power of assigned forces/couples (see, e.g., Germain, 1972; Lemaitre and
Chaboche, 1990).13 Let the symbol ^ designate the virtual velocity. Thus, Çu� is the virtual velocity of
the centroidal surface of the reference layer (0), and �`�Çt

�
is the virtual director rate of layer �`). From

Eq. (94), the virtual power P�i of the inertia forces/couples can be written as

P�i �
�

A

"
Ãf � Çu� �

X
`2N

�`�C ��`� Çt�
#

dA, �122�

Based on Eq. (75), the virtual power P�c of internal forces/couples can be written as

P�c �L� �
X
`2N

�`�@�, �123�

from Eq. (64), we have linear momentum part written as

L� �
�
@A

Ãna� Çu��0�na d�@A� ÿ
�

A
Ãna
,a� _u� dA, �124�

and from Eq. (74), we have the angular momentum part written as

13 In the French literature, the principle of virtual power is usually presented in the form of �ÿP�c ��P�a �P�i , but with di�erent

notations.
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�`�@� �
�
@A
�`�M

a��`�Çt��0�na d�@A� ÿ
�

A
�`�M ��`�Çt� dA: �125�

Based on Eq. (111), the virtual power P�a of assigned forces/couples can be written as

P�a �
�
@A

"
n�a� Çu� �

X
`2N

�`� Äm�a��`�Çt�
#
�0�na d�@A� �

�
A

"
n�� Çu� �

X
`2N

�`� Äm���`�Çt�
#

dA: �126�

Since Eq. (121) holds for all admissible virtual velocity Çu� and director rates �`�Çt
�
, the following

equations of motion are obtained

Ãna
,a � n� � Ãf in A,

�`�M � �`� Äm� � �`�C in A, 8` 2N, �127�
with the following boundary conditions on @A

Either u � u� or Ãna � n�a,

Either �`�t � �`�t� or �`�M
a � �`� Äm�, 8` 2N: �128�

Remark 3.12. Comparing Eq. (127) to Simo and Fox (1989, Eq. (4.19), p. 284), we see that Eq. (127) is
much simpler due to the use of the de®nition of the weighted resultant forces/couples (58)±(60), which do
not have the factors 1=�j and �j: See Remark 3.2.

Remark 3.13. The equations of motion (127) and the boundary conditions (128) for multilayer shells reduce
exactly to those for sandwich shells presented in Vu-Quoc et al. (1997b, Eqs. (84) and (85), p. 2531),
which in turn are shown to reduce exactly to those in Simo and Fox (1989, Eq. (4.19), p. 284). (See
Remark 3.6 in Vu-Quoc et al. (1997b, p. 2533).

4. Strain measures, stress power, and constitutive laws

To have the elastic constitutive relations for multilayer shells, we ®rst introduce the layer e�ective
stress resultants (membrane force �`� ~nba, shear force �`� ~q

a, couple �`� ~mba), then derive the strain measures
conjugate to these resultants. We then postulate the elastic constitutive relations for multilayer shells
that relate the stress resultants to the conjugate strain measures.

4.1. Constitutive restriction

The equations of motion (127) can be thought of as the resultant forms of the local balance of linear
momentum

div�`�sss� �`�rt�`�bt � �`�rt�`�a: �129�

We have de®ned the weighted stress resultants �`�na, �`� Äma, �`�` in Eqs. (58)±(60). These stress resultants
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are related to each other by the resultant form of the local balance of angular momentum (i.e., the
symmetry of the Cauchy stress tensor)

�`�sss � �`�sssT, or
�
�`�g

I��`�sss
�
� �`�gI

� 0: �130�

On multiplying Eq. (130)2 by �`�jt, integrating the result over the layer thickness �`�H, and making use of
Eqs. (30) and (31), we obtain�

�`�H

nÿ
�s`�g

a��s`�sss
�� h�s`�jjj,a �

�
x3 ÿ s�s`�Z

�
�s`�t,a

i
� ÿ�s`�ga��s`�sss

�� �s`�to�`�jt dx3 � 0: �131�

Substituting in Eq. (131) the de®nition of �`�na, �`� Äma, �`�` in Eqs. (58)±(60), we obtain the following
constrained equation

�`�n
a � �`�jjj,a � �`� Äma � �`�t,a � �`� `̀̀̀ � �`�t � 0, �132�

called the constitutive restriction in terms of �`�na, �`� Äma, �`� `̀̀̀:

4.2. Balance of angular momentum in true resultant couples

The constitutive restriction (132) can be eliminated from the balance of angular momentum equation
(127)2 to obtain an alternative form of the balance of angular momentum equation in terms of the true
resultant couples. As noted in Remark 3.2, the weighted resultant couple �`� Äma de®ned in Eq. (59) is not
a true moment. We de®ne below the true resultant couple �`�ma and the true assigned resultant couple

�`�m�

�`�m
aM�`�t � �`� Äma, �`�m

�M�`�t � �`� Äm�: �133�
First, consider the reference layer (0). Using the de®nition of �0�M in Eqs. (67) and (68), we obtain from
Eq. (127)2 the following expression for the balance of angular momentum for layer (0)ÿ

Ma � �0� Äma�
,aÿ�0� `̀̀̀ � �0� Äm� � �0�C: �134�

Now, by taking the cross product between the director �0�t and Eq. (134) throughout, and by noting that

�`�t � �`� Äma
,a �

ÿ
�`�t � �`� Äma�

,a
ÿ�`�t,a � �`� Äma, �135�

we can use the constitutive restriction (132) to eliminate the terms �0�t,a � �0� Äma and �0�t � �0�` to obtain
the following balance of angular momentum for the reference layer (0) in terms of the true couples

�0�m
a
,a � �0�t �Ma

,a|������{z������}� �0�jjj,a � �0�na � �0�m� � �0�t � �0�C: �136�

Similarly, using the de®nition of �`�M in Eqs. (73) and (74), we obtain from Eq. (127)2 the following
expression for the balance of angular momentum for layer �s`)�

s
ÿ
�s`�h

ÿs�s`�n
a � �s`�H�s`�Na�� �s`� Äma�

,aÿ�s`� `̀̀̀ � �s`� Äm� � �s`�C: �137�

By taking the cross product of �`�t with Eq. (137), and by using Eq. (135) together with the constitutive
restriction (132) to eliminate the terms �s`�t,a � �s`� Äma and �s`�t � �s`�` to obtain the following balance of
angular momentum for the reference layer �s`� in terms of the true couples
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�s`�m
a
,a � s�s`�t �

ÿ
�s`�h

ÿs�s`�n
a � �s`�H�s`�Na�

,a|��������������������������������{z��������������������������������}� �s`�jjj,a � �s`�na � �s`�m� � �s`�t � �s`�C, 8s` 2Nnf0g:

�138�

Remark 4.1. The true resultant couple �`�ma de®ned above in Eq. (133)1 is the same as the ``weighted
surface tensor'' Ma in Green and Zerna (1968, p. 375, Eq. (10.2.8)2) whose de®nition is reproduced below

Ma �
��1=2�t
ÿ�1=2�t

�a3 � Ta�y3 dy3,

where the tensor Ta was explained in Remark 3.2. The de®nition of ma in Simo and Fox (1989, Eq. (4.9)),
which di�ers from that of �`�ma in Eq. (133)1 by a factor 1=�j, corresponds to the quantity Ma=

���
a
p

used in
the de®nition of the ``stress couple'' m in Green and Zerna (1968, p. 377, Eq. (10.2.8)2) as reproduced
below

m � naMa���
a
p :

See Remark 3.2 for additional details and on the de®nitions of the resultant forces.

Remark 4.2. The balance of angular momentum equations (136) and (138) reduce exactly to those for
sandwich shells developed in Vu-Quoc et al. (1997b, Eqs. (155)±(157)).

Remark 4.3. Meaning of the coupling (underbraced) terms. Without the underbraced terms in Eqs. (136)
and (138), which comes from the mechanical coupling among the layers, these equations have the
mathematical structure of the balance of angular momentum for each individual layer considered separately
as a single-layer shell. We note that, for the static case and for the case where �0�m� � 0, the balance of
angular momentum for a single-layer shell is similar to Green and Zerna (1968, p. 380, Eq. (10.4.15)).
Also, note that in the static case, the balance of linear momentum (127)1 is similar to Green and Zerna
(1968, p. 380, Eq. (10.4.12)). We give an idea of what the coupling (underbraced) terms in Eqs. (136) and
(138) represent physically by considering these terms under a slightly di�erent form. Instead of the actual
coupling terms, we consider the following the terms

�0�t �Ma, �139�

and

s�s`�t �
ÿ
�s`�h

ÿs�s`�n
a � �s`�H�s`�Na�, �140�

i.e., without the derivative. The physical interpretation of Eqs. (139) and (140) is given in Fig. 6, by
recalling the de®nition of Ma given in Eq. (66) for the left ®gure, and by considering s � �1 (i.e. upper
layer ) in Eq. (140) for the right ®gure. In Fig. 6, �`�F denotes the sum of the layer resultant forces �i �na

for all layers below layer �`), i.e., for i going downward from �`ÿ 1� to �ÿN
�
). Now regarding the

derivative in the coupling terms as existed in the balance of angular momentum equations (136) and (138),
we need to consider the equilibrium of an in®nitesimal element of the multilayer shell. In our future
publications, we will present the complete derivation of the equations of motion from an equilibrium
consideration, as opposed to an approach based on the principle of virtual power (or calculus of variation )
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(see Vu-Quoc and EbciogÆ lu (2000d)).

4.3. Computational form of stress power and constitutive laws

We summarize here the various expressions that are directly employed in a computational setting for
multilayer geometrically-exact shells. For sandwich shells, we refer the readers to Vu-Quoc et al. (1997b)
for the derivation of these expressions, which can be easily extended to the multilayer case, as given
below.

For computation, the stress power Pc in Eq. (61) can be recast into the following form14

Pc �
X
`2N

�
A

h
�`� ~n

ba�`�_Eab � �`� ~mba
�`� _rab � �`� ~qa�`� _da

i
dA: �141�

The quantities in the integrand of Eq. (141) will be de®ned and explained below: ®rst the force
quantities, followed by the conjugate strain measures.

The e�ective resultant membrane stress �`� ~nba is de®ned as follows

�`� ~n
abM�`�n

ab � �`�la:m�`� ~mmb � �`�nab ÿ �`�lb:m�`� ~mma, �142�

where �`�nab and �`� ~mmb are the components of the weighted resultant force �`�na and the weighted
resultant couple �`� Ämm (de®ned in Eqs. (58) and (59)), respectively, along the basis vector �`�jjj,b

(see Eqs.
(32)±(34)):

f�`�a1, �`�a2, �`�a3gM
�
�`�jjj,1

, �`�jjj,2
, �`�t

	
, 8` 2N: �143�

�`�n
a � �`�nab�`�ab � �`�qa�`�a3, �144�

�`� Äma � �`� ~mab�`�ab � �`� ~ma3�`�a3: �145�

The quantity �`�la:m in Eq. (142) is the component of the vector �`�t,a along the basis vector �`�jjj,m

�`�t,a � �`�lm:a�`�am � �`�l3:a�`�a3: �146�

The e�ective transverse shear force �`� ~q
a is then de®ned as15

�`� ~q
aM�`�q

a ÿ �`�l3:m�`� ~mma, �147�

where �`�qa, �`� ~mam, and �`�l3:m come from Eqs. (144)±(146), respectively.

Remark 4.4. We note the following symmetry conditions for the membrane force �`� ~nab and bending moment

�`� ~mab

14 The derivation of Eq. (141) includes the elimination of the unitary constraints of the directors, i.e., k�`�tk � 1: See Vu-Quoc et

al. (1997b, p. 2543, Eq. (161)).
15 There are some misprints in Eq. (174), p. 2544, in Vu-Quoc et al. (1997b): The order of the superscripts �ma� in �`� ~mma should be

as shown in Eq. (147), because of our de®nition of the moments, and not �`� ~mam:
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�`� ~n
ab � �`� ~nba, �148�

�`� ~mab � �`� ~mba, �149�
While the symmetry of the membrane force in Eq. (148) can be proven (see Vu-Quoc et al. (1997b, Eq.
(170)), the symmetry of the bending moment in Eq. (149) is an assumption, following Simo and Fox
(1989).

Now, we de®ne the conjugate strain measures. Let the initial value of f�`�ai g be written as f�`�Ai g, i.e.,�
�`�A1, �`�A2, �`�A3

	
Mf�`�a1, �`�a2, �`�a3gjt�0, 8` 2N: �150�

The membrane strain �`�Eab and the bending strain �`�rab conjugated with the membrane force �`� ~nba and
the bending moment �`� ~mba, respectively, can now be de®ned as follows:

Membrane strain �`�Eab:

�`�EabM
1

2

ÿ
�`�aab ÿ �`�Aab

�
, �151�

�`�aabM�`�aa��`�ab, �`�AabM�`�Aa��`�Ab: �152�

Bending strain �`�rab:

�`�rab � �`�kab ÿ �`�Kab, �153�

�`�kabM�`�aa��`�a3, b, �`�KabM�`�Aa��`�A3, b: �154�

Shear strain �`�da:

�`�da � �`�ga ÿ �`�Ga, �155�

�`�ga � �`�aa��`�a3, �`�Ga � �`�Aa��`�A3: �156�

Finally, the linear constitutive laws related the e�ective resultant forces �`� ~nba, �`� ~mba, �`� ~q
a, to their

respective conjugate strain measures �`�Eab, �`�rab, �`�da are given below:

�`� ~n
ab � �`� �jt

�`�E�`�H
1ÿ ��`�n�2 �`�

H bagd�`�Egd, �157�

�`� ~mab � �`� �jt
�`�E

ÿ
�`�H

�3
12
�
1ÿ ��`�n� 2

� �`�H bagd�`�rgd, �158�

�`� ~q
a � �`� �jt k �`�G�`�H�`�A

ab�`�db, �159�

where �`� �jt is de®ned in Eq. (62), and

�`�HM�`�h
� � �`�hÿ, �`�A

abM�`�A
a��`�Ab �160�
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are, respectively, the total thickness of layer �`� and the dual metric tensor of layer �`� in the reference
con®guration; �`�E, �`�G, �`�n are, respectively, the Young's modulus, shear modulus, and Poisson's ratio
for layer �`); k is the shear correction coe�cient.16 The elastic constant �`�H bagd given as follows

�`�H
bagd � �`�n�`�Aba�`�A

gd � 1

2

ÿ
1ÿ �`�n

��
�`�A

bg�`�A
ad � �`�Abd�`�A

ag
�

�161�

is a fourth-order elasticity tensor.

4.4. Reduction to multilayer beam

We now proceed to unify the present formulation for multilayer shells with that for multilayer (plane)
beams developed in Vu-Quoc and EbciogÆ lu (1996). Speci®cally, we will show that the equations of
motion in Vu-Quoc and EbciogÆ lu (1996, Eq. (3.57)) can be deduced from Eq. (127).

To obtain the balance of linear momentum Vu-Quoc and EbciogÆ lu (1996, Eq. (3.57)1), we make the
following transformation of notation from shells to beams17

�`�n
24 �`�n, x24S, �s`�jjj4 �s`�FFF0, �s`�ccc4 �s`�jjj, �`�t4 �`�t2: �162�

Then, with x1 and �`�n1 ignored, Eq. (127)1 reduces to Vu-Quoc and EbciogÆ lu (1996, Eq. (3.57)1) by
noting that the following relations (63)2, (89), (86)1, (82) and (83) for shells in Section 3 reduce exactly
to the corresponding relations (3.19), (3.44), (3.40)1, (3.36) and (3.37) for beams in Vu-Quoc and
EbciogÆ lu (1996), respectively.

Next, we consider ®rst the static part of the balance of angular momentum. The following additional
transformation of notation is used

�`�m
24 �`�m, �`�m�e3 � �`�m, �`�m

a
,a�e34 �`�m,s, �163�

M24M, M�e3 �M, �164�

�`�m
��e34 �`�M: �165�

Note that the de®nition of M2 in Eq. (66) is exactly the same as Vu-Quoc and EbciogÆ lu (1996, Eq.
(3.23)). For layer �`� in a multilayer beam, we have (Vu-Quoc and EbciogÆ lu, 1996, Eq. (3.7)2)

�`�t2, S � ÿ�`�y,S�`�t1, �166�

and that f�`�t1, �`�t2, e3g form a set of orthonormal vectors.
We consider ®rst layer (0). From the ®rst term in Eq. (136), and using Eq. (163)3, we obtain the ®rst

term �0�m,S in the integrand in Vu-Quoc and EbciogÆ lu (1996), Eq. (3.24). From the last term on the left-
hand side of Eq. (136), and using Eq. (165), we obtain the assigned couple �0�M in Vu-Quoc and
EbciogÆ lu (1996, Eq. (3.57)2). Now, we examine the second and third terms of Eq. (136), which can be
written in beam notation, with x1 and M1 ignored, as follows

�0�t2 �M,S � �0�FFF0 � �0�n �
ÿ
�0�t2 �M

�
,S
��0�y,S�0�t1 �M� �0�FFF0 � �0�n, �167�

16 When k � 5=6, the relation (159) is the same as that given in Naghdi (1972, p. 587).
17 The reader is referred to Vu-Quoc and EbciogÆ lu (1996) for the multilayer beam notation.
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after an integration by parts and the use of Eq. (166). Projecting the vector relation (167) along the e3
direction, and noting thatÿ

�0�t2 �
�
,S
�e3 �

ÿ
�0�t2 �M�e3

�
,S
� ÿe3 � �0�t2�M�

,S
� ÿÿ�0�t1�M�

,S
, �168�

�0�y,S�0�t1 �M�e3 � �0�y,Se3 � �0�t1�M � �0�y,S�0�t2�M, �169�

we can rewrite Eq. (167) as follows

ÿ��0�n� �0�FFF0

��e3 ÿ ÿM��0�t1�,S�ÿM��0�t2��0�y,S, �170�

which is exactly the last three term in the integrand in Vu-Quoc and EbciogÆ lu (1996, Eq. (3.24)). With
the above, we have reduce the static part of the balance of angular momentum in layer (0) from shells
to beams. Now, we consider the inertia term, i.e., the right-hand side of Eq. (136); recalling Eq. (162)5,
and projecting this term on e3, we obtainÿ

�0�t2 � �0�C
��e3 � e3 � �0�t2��0�C � ÿ�0�C � �0�t1 M

�0�C, �171�

where �0�C is given in Eq. (95), and �0�C is the inertia for beams in Vu-Quoc and EbciogÆ lu (1996, Eq.
(3.53)). We have thus reduced the balance of angular momentum for layer (0) for shells to that for
beams.

Now for layer �`), as done above, it is easy to see how to obtain the ®rst term �`�m,S in the integrand
in Vu-Quoc and EbciogÆ lu (1996, Eq. (3.29)), and the assigned couple �`�M in Vu-Quoc and EbciogÆ lu
(1996, Eq. (3.57)2). Next, similar to what we did in Eq. (167), using the conversion to beam notation in
Eq. (162), we rewrite the second and the third term in Eq. (138), after an integration by parts on the
third term and a rearrangement of the terms, as follows

�s`�FFF0,S � �s`�nÿ s�s`�t2,S �
ÿ
�s`�h

ÿs�s`�n|�����������������{z�����������������}� �s`�H�s`�N�� s
�
�s`�t2 �

ÿ
�s`�h

ÿs�s`�n� �s`�H�s`�N
��

,S
�172�

The deformation map �s`�FFF0 of beam layer �s`� is related to the deformation map �0�FFF0 of beam layer (0)
via Eqs. (18) and (19), after using the conversion (162), by

�s`�FFF0M�s�`ÿ1��FFF
�s
0 � s�s`�h

ÿs�s`�t2|��������{z��������}, �173�

�s�`ÿ1��FFF
�s
0 M�0�FFF0 � s

24ÿ �0�hÿs�0�t2 � Xs�`ÿ1�
i�0

�i�H�i�t2

35, �174�

which are identical to Vu-Quoc and EbciogÆ lu (1996, Eqs. (2.6) and (2.7)). Substituting Eqs. (173) and
(174) into Eq. (172), noticing that the term underbraced in Eq. (172) is cancelled as a result of the
underbraced term in Eq. (173), and using Eq. (166), we obtain

�0�FFF0,S � �s`�n� s�0�h
ÿs�0�y,S�0�t1 � �s`�Nÿ s

Xs�`ÿ1�
i�0

�i�H�i�y,S�i�t1 � �s`�n

�s�s`�H�s`�y,S�s`�t1 � �s`�N� s
�
�s`�t2 �

ÿ
�s`�h

ÿs�s`�n� �s`�H�s`�N
��

,S
: �175�
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Next, we project Eq. (175) on e3, noting that e3 is independent of the coordinate S and using a similar
manipulation as in Eqs. (168) and (169), to obtain

ÿ��s`�n� �0�F0, S

��e3 � s�0�h
ÿs�0�y,s

ÿ
�s`�n��0�t2

�

ÿs
Xs�`ÿ1�
i�0

�i�H�i�y,S
ÿ
�s`�n��i�t2

�� s�s`�H�s`�y,S
ÿ
�s`�N��s`�t2

�
ÿs�ÿ�s`�hÿs�s`�n� �s`�H�s`�N���s`�t1�,S, �176�

which is the same as the remaining terms (after the ®rst term �`�m,S mentioned above) in Vu-Quoc and
EbciogÆ lu (1996, Eq. (3.29)) (even though not presented in the same order). Now come the inertia term
on the right-hand side of Eq. (138); the same method used to obtain Eq. (171) can be used here, i.e.,ÿ

�`�t2 � �`�C
��e3 � e3 � �`�t2��`�C � ÿ�`�C � �`�t1 M

�`�C, 8` 2Nnf0g, �177�

where �`�C is given in Eqs. (96) and (97), and �`�C is the inertia for beams in Vu-Quoc and EbciogÆ lu
(1996, Eqs. (3.54) and (3.55)).

5. Closure

Employing the principle of virtual power, we derived the equations of motion of geometrically-exact
multilayer shells, whose dynamics is referred to a ®xed inertial frame, thus rendering the inertia operator
much simpler than that obtained in other types of formulation for multibody dynamics. The present
formulation can be employed for the analysis of multilayer shells undergoing large deformation and
large overall motion. The continuity of the displacement across the layer boundaries is exactly enforced.
Shear deformation is accommodated independently in each layer. The thickness and the side dimensions
of each layer are arbitrary, thus allowing for the modeling of an important class of multilayer structures
with ply drop-o�s. The number of layers is completely unrestricted. An important features of the
present formulation is that the reference layer can be chosen arbitrarily among the layers. We also
showed that the equations of motion for geometrically-exact multilayer shells reduce exactly to those for
geometrically-exact multilayer beams and 1D plates. The balance of power presented in this paper forms
the basic weak form that is employed in the ®nite element formulation for the computation of
multilayer shells (see, e.g., Vu-Quoc et al., 2000b,c).
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